2,953 research outputs found

    Evaluation Program for Secondary Spacecraft Cells: Initial Evaluation Tests of General Electric Company 6.0 Ampere Hour Nickel Cadmium Spacecraft Cells for the Dynamic Explorer Satellite Program

    Get PDF
    Evaluation tests of 10 nickel cadmium cells are described. Although pressures were greater than what normally was exhibited by General Electric cells in the past, it is recommended that these cells be placed on life test simulating the predicted Dynamic Explorer flight profiles

    Evaluation program for secondary spacecraft cells - Acceptance test of Sonotone Corporation 20 ampere-hour nickel-cadmium cells

    Get PDF
    Acceptance tests of 20 ampere-hour sealed nickel-cadmium secondary spacecraft cell

    Initial evaluation tests of Eagle-Picher Industries 9.0 ampere-hour nickel-cadmium spacecraft cells for the heat capacity mapping mission satellite and the stratospheric aerosol and gas experiment satellite

    Get PDF
    The results of tests to insure that all cells put into the life cycle program are of high quality are reported. The tests consisted of the following: phenolptalein leak tests, internal short test, charge efficiency test, and overcharge tests. The results of tests for 10 cells are tabulated

    Initial evaluation tests of General Electric Company 26.5 ampere-hour nickel-cadmium spacecraft cells with auxiliary electrodes for the TIROS-N and NOAA-A satellites

    Get PDF
    This evaluation test program had the purpose to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. Test limits specify those values at which a cell is to be terminated from charge or discharge. Requirements are referenced to as normally expected values based on past performance of aerospace nickel-cadmium cells with demonstrated life characteristics. A requirement does not constitute a limit for discontinuance from test

    Evaluation program for secondary spacecraft cells: Initial evaluation tests of General Electric Company 40.0 ampere-hour nickel-cadmium spacecraft cells for the tracking data relay satellite system

    Get PDF
    Five cells provided by NASA's Goddard Space Flight Center were evaluated at room temperature and pressure (25 C plus or minus 2 C) with discharges at the 2 hour rate. Measurements of the cell containers following test, indicated an average increase of .006 inches at the plate thickness. Average end of charge voltages and pressures, and capacity output in ampere hours were determined. Three cells exceeded the voltage requirements of 1.52 volts during both c/10 charges at 20 C. All cells exceeded the voltage requirement of 1.52 volts during the 0 C overcharge test, although their end charges were below 1.50 volts. The pressure requirement of 65 psia was exceeded by both pressure transducer cells during c/10 charges at 25 C and 20 C and also during the 0 C overcharge test. The cells with pressure transducers reached a pressure of 20 psia before reaching the voltage limit of 1.550 volts during the pressure versus capacity test, and exhibited a pressure decay of 2 psia during the last 30 minutes of the 1 hour open circuit stand. Average capacity was 51.3 ampere hours

    Evaluation program for secondary spacecraft cells - Acceptance test of McDonnell- Douglas, astropower division 5.0 ampere-hour silver-zinc cells

    Get PDF
    Acceptance tests of 5.0 ampere-hour silver-zinc cells for spacecraft power supplie

    Evaluation program for secondary spacecraft cells: Initial evaluation tests of General Electric Company 12.0 ampere-hour nickel-cadmium spacecraft cells for the international ultraviolet explorer

    Get PDF
    An evaluation test program was conducted to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. The 20 cells were manufactured for the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The cells are from a lot of 175 cells procured for the International Ultraviolet Explorer project. Due to a change in requirements, the project selected to use 6.0 ampere-hour cells. Therefore, the remaining cells of this lot have been placed in storage at GSFC for use on a future GSFC project. All the cells are rated at 12.0 ampere-hours and contain double ceramic seals. Test limits specify those values in which a cell is to be terminated from a particular charge or discharge. Requirements are referred to as normally expected values based on past performance of aerospace nickel cadmium cells with demonstrated life characteristics

    Evaluation program for secondary spacecraft cells: Initial evaluation tests of Gulton Industries, Incorporated, 9.0 ampere-hour nickel-cadmium spacecraft cells with auxiliary electrodes for the small astronomy Satellite (SAS-C)

    Get PDF
    An evaluation test program was conducted to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. Tests and results are described

    Evaluation program for secondary spacecraft cells. Initial evaluation tests of Eagle-Picher Industries, Incorporated 3.0 ampere-hour nickel-cadmium spacecraft cells

    Get PDF
    The capacity of the cells ranged from 3.58 to 3.97 amperehours during the three capacity tests. Three cells were removed from test, due to high pressure, during the C/10, 24-hour charge at room ambient temperature. The voltage requirement of 1.480 volts was exceeded by the cells during the C/10, 24-hour charge at 20 C, although the end-of-charge voltage was below this value (1.466-1.475 volts). Average capacity out during the 20 C charge efficiency test was 0.84 AH which represents 48% and is below the minimum requirement of 55%. The cells exhibited no pressure decay during the open-circuit stand portion of the pressure versus capacity test, as all cells reached their voltage limit (1.550 volts) before their pressure reached 20 psia with the highest pressure being 8 psia during charge
    corecore